Electrolytic Coloring of Anodized Aluminum by Copper

Author:

Nozari Nezhad Masume1,Kolahi Alireza1,Kazemzad Mahmood1,Saiedifar Maryam1

Affiliation:

1. Materials and Energy Research Center

Abstract

It is important to generate aluminum oxide layer on the surface of aluminum in order to enhance the adhesion of the dye molecules in coloring aluminum industry. One of the major advantages of aluminum is the formation of a resistant oxide layer naturally, but the thickness of this layer is not high enough and it should be damaged due to lack of mechanical strength. However, the thickness of oxide layer can be increased through anodizing; this process improves its abrasion and corrosion resistance as well as its mechanical properties. In the present study, specimens of pure aluminum were anodized under galvanostatic condition in sulfuric acid electrolyte and porous nanostructured aluminum oxide layer was formed. Porosity of the anodized layer was controlled by optimizing the working conditions such as electrolyte concentration, anodizing time and current density. Finally, the specimens were electrolytically colored by applying alternating current to copper (Cu) solutions. Colored coatings were created at constant voltage and different coloring duration. The results indicated that the shade of different metal ions can be optimized by controlling the coloring parameters, the longer time of coloring results in the darker colors. The samples were examined by X-Ray Diffraction (XRD) spectroscopy and Scanning Electron Microscopy (SEM) and electrochemical test.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3