Corrosion Characterization of High Moment Magnetic Material Coated with Diamond-Like Carbon

Author:

Supadee Laddawan1,Chatruprachewin Santi1,Suriya-Amaranont Chaba1,Titiroongruang Wisut1

Affiliation:

1. King Mongkut’s Institute of Technology Ladkrabang

Abstract

In order to increase data storage density of hard drive, DLC overcoat thickness was decreased to allow read/write head to come closer to magnetic alloy of the disk, andwith maintaining the main purpose of the overcoat to provide good corrosion and mechanical protection for the underlying magnetic recording film under unfavorably environmental conditions and occasional reactions. Base on that the edges of topography will be weak point for deposition films cause of shadow effect during the process, its hard that deposition atomic will stay at the concave and convex of topography. DLC coverage performance at the edge of 3D topography becomes high sensitive with limited DLC films thickness. Currently the 3D profile of magnetic material that needs to protect with DLC, is about 2 nanometers with subnanometres DLC thickness. The enormous of data shrew corrosion pattern was usually happened at the edge of topography. Thus, the accelerated test or indirect methodology was applied for DLC integrity. This investigation was explore the methodology to verify the weakness of DLC films especially at the topography edges which is difficult for any direct metrology tools can pursue. With pore resistance, which related to the film structure, the electrochemical impedance indicated that DLC/Si3N4 is a suitable choice to against corrosion. However topography surface influence to DLC coverage. Controllable surface for DLC deposition also needed well defined. Two types of step height was created as 1 nm and 2 nm on (100) silicon substrate. The 20Å DLC film thickness was deposited on the silicon substrate with promised technique, Filtered Cathodic Vacuum Arch (FCVA). After this process the aluminum (Al) was deposited on the surface of DLC film by using evaporation technique. The silicon substrate was driven to Al surface thro pin holes on the DLC film at 577OC. To detect the pin holes on the DLC film, the aluminum layer was removed by using wet etch chemical process. The SEM image indicates that the square pitting at the edge of DLC film obtained for 2nm step height was around 2nm depth. The latest experiment in this investigation to characterize 2.3 T magnetic moment material degradation with DLC/Si3N4 coating, was performed with electrochemical impedance spectroscopy and AFM. The material with DLC overcoat after exposed to H2SO4 for 30 min, polarization resistance was increased for 2 times from uncoated material. Alternative charge transfer capacitance was reduced as desirable charge current.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3