Experimental Evidence on the Thermal Performance of Opaque Surfaces in Mediterranean Climate

Author:

Franzitta Vincenzo1,Milone Angelo1,Milone Daniele1,Pitruzzella Salvatore2,Trapanese Marco1,Viola Alessia1

Affiliation:

1. University of Palermo

2. Università degli Studi Palermo

Abstract

The thermal insulation of buildings, intended as wrap feature which determines the dispersion of heat, the reference parameter is necessary to contain the thermal losses during the winter season. The transmittance of the opaque components, used as an indicator of the energy quality of a casing, together with the overall coefficient of dispersion, represents a proper descriptor of the behavior during the heating season. However, if a strong insulation in winter conditions brings only positive effects, the same cannot be said for the summer conditions. A high value of the insulation in the casing is convenient only when the gains free, either in the form of solar contribution that of endogenous heat, are controlled and restricted. From the national transposition of the 2002/91/CE legislation up to the 2010/31/EU on the energy performance of buildings, performance values are set very restrictive transmittance of opaque surfaces that both of those transparent to the new buildings. The same does not happen for the thermophysical characteristics able to implement strategies for the control of solar radiation during the summer period, the fluctuations in external temperatures during the summer period. This article shows some experimental evidence of the effects on transmission rate and density of the opaque elements of the buildings carried out on a case study of a representative building of climate-Mediterranean summer: The study verify the results produced by increased insulation of the building envelope on energy performance of buildings during the summer through indicators such as temperature and energy consumption to maintain the same constant with respect to the prescribed values.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Economic Approach to Choose the Energy Mix for Small Islands. A Case Study in the Mediterranean Sea;OCEANS 2023 - MTS/IEEE U.S. Gulf Coast;2023-09-25

2. Light pollution on the historical center of Palermo. A case study;2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe);2023-06-06

3. Testing of a PTO for wave energy exploitation to electrical energy production;OCEANS 2023 - Limerick;2023-06-05

4. Marine biomass as potential energy source. The state of art;OCEANS 2023 - Limerick;2023-06-05

5. State of art and economic evaluation of wave energy converters. A case study;OCEANS 2022, Hampton Roads;2022-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3