Affiliation:
1. CEA, IRAMIS, SPCSI, Grp. Complex Systems and Fracure
2. École Centrale de Lyon
3. IFP
4. École Nationale Polytechnique d'Alger
Abstract
The study relates to joints fabricated by solid state bonding between alumina and nickel alloy HAYNESTM214®, using an intermediate nickel metallic foil. Experimentally, damages and cracks often are observed close to the metal/ceramics interface. Consequently, the residual stresses distributions in the specimen were characterized experimentally using X-ray diffraction (XRD) and indentation techniques and predicted by Finite Element Analysis (FEA) calculations using an elastic-plastic-creep model. We demonstrate that a good correlation between FEA calculations and experimental results is obtained. Then, the effect of elaboration and geometrical parameters has been studied in order to minimize the residual stresses in alumina close to the metal-ceramics interface. However, the Al2O3/Ni/HAYNESTM214® system always leads to high residual stresses. To solve this problem, we show that the use of a multi-layer Cu/Ni/Cu joint, associated with the Direct Copper Bonding method (DCB), by pre-oxidation of copper, allows reducing significantly the tensile residual stresses in ceramics.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献