Calculation of Critical Crack Size of Repair Welded Rail

Author:

Jun Hyun Kyu1,Seo Jung Won1

Affiliation:

1. Korea Railroad Research Institute

Abstract

Repair of damaged rail surface by overlay welding is the common rail maintenance method. But the discontinuity in material between base and weld brings initiation of cracks and they causes a rail fracture. Unfortunately, such cracks are hard to detect on site because the weld boundary prevents the echo signals penetration by reflection. So estimation of the critical crack size (CCS) has been a critical issue in railroad industry to prevent a rail from sudden fracture. In this study, we calculated the critical size of crack which was initiated and propagated underneath of the overlay welded rail by applying linear elastic fracture mechanics. For this purpose, we measured the maximum load carrying capacities of cracked UIC60 by inverted 3 point bend tests and checked the feasibility of the finite element (FE) analysis procedure. We could find the correlation in crack size between the test and 3D FE analysis results and applied the proposed 3D FE analysis model to calculate the CCS of a rail. We calculated the stress intensity factors on cracked rail by increasing the size of crack until the rail broke. The CCS was calculated as around 30.0 mm under the normal railway service operating condition.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference4 articles.

1. R.F. Kral, S.A. Mayhill, M.Q. Johnson, U.S. Patent 7, 520, 415 B2. (2009).

2. D. Workman and R. Kral, Flash butt wedge repair of weld head defects, Proceedings of the ASME/ASCE/IEEE Joint rail conference (2011) 1-7.

3. Fracture and fatigue evaluation of slot-welded railhead repairs, Federal railroad administration, (2008).

4. H.A. Aglan and M. fateh, Fracture and fatigue crack growth analysis of rail steels, J. Mechanics of materials and structures. 2 (2007) 335-346.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determination of the critical fatigue crack length for orthotropic steel decks;Journal of Constructional Steel Research;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3