Mass Production of Stacked Styrofoam Nanofibers Using a Multinozzle and Drum Collector Electrospinning System

Author:

Munir Muhammad Miftahul1,Nuryantini Ade Yeti1,Iskandar 1,Suciati Tri1,Khairurrijal 1

Affiliation:

1. Institut Teknologi Bandung

Abstract

Electrospinning offers the unique ability to produce fibers with very small diameters down to a few tens of nanometers and an attractive mechanical appearance as well as the controllability of morphology, surface and pores structure. However, the main drawback of the conventional electrospinning technique is its low productivity. In order to produce high yield nanofibers, the production rate of nanofibers must be improved. The multinozzle and drum collector electrospinning system was then developed to overcome the problem. The multinozzle sub-system was used to increase the production rate of nanofibers while the drum collector was utilized to maintain the uniformity and thickness of stacked nanofibers. A solution prepared by dissolving waste styrofoam in the mixture of tetrahydrofuran (THF), citronella oil and cajuput oil was the precursor to produce the stacked styrofoam nanofibers.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3