Study on Natural Gas Demand Prediction Model in China

Author:

Feng Xue1,Zhang Jin Suo1,Zou Shao Hui1,Bao Wuyunbilige1

Affiliation:

1. Xian University of Science and Technology

Abstract

Based on the characteristics of natural gas demand trend, this paper proposed ARIMA model which can predict China's natural gas demand as an effective tool. Compared with the RBF neural network model and combined model, empirical results show that the accuracy and stability of the ARIMA model is best.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference10 articles.

1. National Bureau of Statistics. National economy and society developed statistical bulletin[M]. Beijing: China Statistics Press, (2012).

2. Yuanshun Du. Regression analysis method for gas daily load [J]. Gas and Heat, 1982, 2(4): 26-30.

3. Shilian Chen, Guiying Gao. Analysis and Forcast for Production and Main Consume Quantity of Energy[J]. SYSTEMS ENGINEERING-THEORY and PRACTICE, 1994, 14(9): 69-73.

4. Contreras J, Espinola R, Nogales F J, et al. ARIMA models to predict next-day electricity prices[J]. Power Systems, IEEE Transactions on, 2003, 18(3): 1014-1020.

5. Zhao Yang, Yan Liu. Application of Neural network in Natural Gas Load Forecasting[J]. Gas and Heat, 2003(6): 331-332.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3