Combustion Synthesis and Sintering of TiB2-Al2O3 Composites; Investigating the Effects of Different Al-Content as a Precursor

Author:

Montakhab Elham1,Hadian Ali Mohammad1

Affiliation:

1. University of Tehran

Abstract

Titanium diboride (TiB2) ceramics have unique physical and chemical properties such as excellent electrical conductivity, high melting point and good corrosion resistance. But due to its relatively low sinterability, the use of this material is currently limited. The addition of Al2O3 to TiB2 can improve its fracture toughness, flexural strength, sinterability, and impact resistance. In this paper, TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis (SHS) method with reductive process from H3BO3-TiO2-Al system. Aluminum and magnesium were used as reductive elements to provide sufficient heat as primary driving force to obtain TiB2-Al2O3 composite. Due to the lower energy release in using aluminum as the initiator of the SHS process, finer microstructure can be achieved. Different stoichiometric amounts of aluminum as precursor were added to the mixture to examine its effect on the reaction progress. To evaluate the complete chemical conversion of the reactants, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analyses were carried out. The highest conversion ratio was obtained from the sample containing 1.2 stoichiometric amount of aluminum.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3