Prediction and Investigation of Surface Response in High Speed End Milling of Ti-6Al-4V and Optimization by Genetic Algorithm

Author:

Alam S.1,Nurul Amin A.K.M.1,Patwari Anayet Ullah2,Konneh Mohamed3

Affiliation:

1. International Islamic University Malaysia (IIUM)

2. Islamic University of Technology

3. International Islamic University of Malaysia

Abstract

In this study, statistical models were developed using the capabilities of Response Surface Methodology (RSM) to predict the surface roughness in high-speed flat end milling of Ti-6Al-4V under dry cutting conditions. Machining was performed on a five-axis NC milling machine with a high speed attachment, using spindle speed, feed rate, and depth of cut as machining variables. The adequacy of the model was tested at 95% confidence interval. Meanwhile, a time trend was observed in residual values between model predictions and experimental data, reflecting little deviations in surface roughness prediction. A very good performance of the RSM model, in terms of agreement with experimental data, was achieved. It is observed that cutting speed has the most significant influence on surface roughness followed by feed and depth of cut. The model can be used for the analysis and prediction of the complex relationship between cutting conditions and the surface roughness in flat end milling of Ti-6Al-4V materials. The developed quadratic prediction model on surface roughness was coupled with the genetic algorithm to optimize the cutting parameters for the minimum surface roughness.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3