Abstract
Cobalt-boron nanoparticles have been synthesized by a chemical reaction between NaBH4 and CoCl2.6H2O through manipulating pH value of the reaction mixture. The morphology, structure, phase composition, and thermal behavior have been examined via FESEM, TEM, XRD, EDS, and DSC techniques, respectively. It is demonstrated that the morphology and structure of ultimate nanoparticles completely depends on the pH value of reaction mixture. While the neutral pH value favors the smallest nanoparticles with a mean particle size of 50 nm and complete amorphous structure, the acidic condition promotes the growth process and the crystal structure. Furthermore, these nanoparticles transform into cobalt nanocrystallites after heated at 600°C, and retained the discrepancies in the morphology and the structure of the parent cobalt-boron nanoparticles. A detailed characterization of the nanoparticulates, discussions on the synthesis mechanism, and subsequent formation transformation have been provided.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献