Affiliation:
1. Montanuniversität Leoben
2. GfE Fremat GmbH
Abstract
In the present study the high-temperature deformation behavior of a caste and subsequently HIPed β-solidifying γ-TiAl-based alloy with a nominal composition of Ti-43.5Al-4Nb-1Mo-0.1B (in at. %), termed TNM alloy, is investigated. At room temperature this alloy consists of ordered γ-TiAl, α2-Ti3Al and βo-TiAl phases. By increasing the temperature, α2 and βo disorder to α and β, respectively. In order to get a better understanding of dynamic recovery and recrystallization processes during thermomechanical processing, isothermal compression tests on TNM specimens are carried out on a Gleeble®3500 simulator. These tests are conducted at temperatures ranging from 1100 °C to 1250 °C (in the α/α2+β/βo+γ phase field region) applying strain rates in the range of 0.005 s-1 to 0.5 s-1 up to a true strain of 0.9. The evolution of microstructure along with the dynamically recrystallized grain size during hot deformation is examined by scanning electron microscopy (SEM). The flow softening behavior after reaching the peak stress in the true stress-true strain curve is attributed to dynamic recrystallization. By using the Zener-Hollomon parameter as a temperature-compensated strain rate the dependence of flow stress on temperature and strain rate is shown to follow a hyperbolic-sine Arrhenius-type relationship.
Publisher
Trans Tech Publications, Ltd.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献