The History, Challenges and the Future of Biodegradable Metal Implants

Author:

Witte F.1,Eliezer Amir2,Cohen S.3

Affiliation:

1. Hannover Medical School

2. Sami Shamoon College of Engineering

3. Ben-Gurion University of the Negev

Abstract

New interest in magnesium alloys as temporary biomaterials was reborn in the recent years. Especially metals based on physiological trace elements seem to be promising as an alternative to current biodegradable implant materials in cardiovascular and musculoskeletal applications. First clinical reports can be dated back before 1900. Magnesium alloys were used by surgeons of different clinical background in cardiovascular, neural, skin, general and musculoskeletal surgery. All patients have benefited from the treatment with magnesium alloys, although rapid corrosion caused sometimes painless subcutaneous gas cavities. These reports encouraged researchers to study and invent new magnesium alloys which aim to provide more uniform and slow corrosion rates. The most challenging part was to analyze the corrosion of implanted magnesium alloys in-vivo, since the magnesium alloys interlock with the surrounding tissue during corrosion. Therefore, the implanted samples could not be retrieved without damaging the fragile implant-tissue interface. Synchrotron-radiation based microtomography (SRµCT) was introduced as a solution to this challenge. SRµCT enables to measure non-destructively the in-vivo corrosion rates of magnesium alloys as well as their corrosion morphology. Based on these data, it was concluded that suitable magnesium implants should provide small grains, which are distributed very homogenously and should be produced with highest purity. The future of biodegradable magnesium alloys might be directed towards implant areas where high ductility, maximal tensile strength as well as high compression strength is needed and the properties of current biodegradable implant-materials are exceeded by the properties of magnesium alloys.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3