New Detection Method for Gear Faults Based on Kernel Independent Component Analysis and BP Neural Network

Author:

Li Zhi Chun1

Affiliation:

1. Wuhan University of Technology

Abstract

Gearboxes are widely used in various kinds of applications. The normal operation of the gears contributes important roles on the machine performance. Due to harsh environment the rolling bearings are prone to failures. Hence, it is essential to detect the gear faults. However, the vibration signals of the gearbox are often contaminated, leading to deterioration of the fault diagnosis performance. To address this issue, a new approach is proposed based on the kernel independent component analysis (KICA) and BP neural network (BPNN). The KICA was used to extract sensitive signals to eliminate noise signals. Then a BPNN was adopted to detect the gear fault. To improve the fault identification, the Genetic Algorithm (GA) was adopted to optimize the BP parameters. Experiment tests using the gearbox fault simulator have been implemented. The test results show that the noise signals have been eliminated by the KICA and the GA-BPNN can detect the gear fault accurately. Moreover, through comparison with other existing methods, the proposed KICA-GA-BPNN produced the best detection rate of 93.7%.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3