Knowledge-Based Computer Aided Process Innovation Method

Author:

Geng Jun Hao1,Tian Xi Tian2

Affiliation:

1. Northwestern Polytechnical University

2. Northwestern Polytechnical Unverisity

Abstract

The process innovation is difficult, costly and time-consuming because it mainly depends on limited knowledge and random inspiration of individual. This paper presents a knowledge-based computer aided process innovation (KCAPI) method in order to change this situation. In this method, process knowledge is described with formal format, organized into knowledge chain. The process contradiction matrix (PCM) is used to express the relations between technical conflict items in process problem and corresponding solving theories. At last the technical conflicts can be eliminated iteratively based on PCM via knowledge chain to approach the innovation goal. The KCAPI method can implement the systematic and structured process innovation and improve the innovation efficiency and quality. A welding process innovation instance was shown to confirm this method.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference5 articles.

1. OECD and Eurostat: Oslo Manual: Guidelines for Collecting and Interpreting Innovation Data, 3rd Edition (OECD Publishing, France 2005).

2. R.A. Shirwaiker, G.E. Okudan: JOURNAL OF INTELLIGENT MANUFACTURING. Vol. 19 (2008), p.33.

3. X.T. ZHANG, J.H. CHEN: Industrial Engineering Journal. Vol. 7 (2004), p.33.

4. Y. Li, Y. Liu and F. Ren: JOURNAL OF TECHNOLOGY TRANSFER. Vol. 32 (2008), p.63.

5. G. Cascini , P. Rissone and F. Rotini: PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE. Vol. 222 (2008), p.1715.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3