Modeling of Gas Holdup and Pressure Drop Using ANN for Gas-Non-Newtonian Liquid Flow in Vertical Pipe

Author:

Bar Nirjhar1,Das Sudip Kumar1

Affiliation:

1. University of Calcutta

Abstract

This paper is an attempt to compare the the performance of the three different Multilayer Perceptron training algorithms namely Backpropagation, Scaled Conjugate Gradient and Levenberg-Marquardt for the prediction of the gas hold up and frictional pressure drop across the vertical pipe for gas non-Newtonian liquid flow from our earlier experimental data. The Multilayer Perceptron consists of a single hidden layer. Four different transfer functions were used in the hidden layer. All three algorithms were useful to predict the gas holdup and frictional pressure drop across the vertical pipe. Statistical analysis using Chi-square test (χ2) confirms that the Backpropagation training algorithm gives the best predictability for both cases.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference25 articles.

1. K.J. Bell, Two-phase flow regime consideration in condenser and vapour design, Int. Commun. Heat Mass Transfer 15 (1988) 429-448.

2. P.L. Spedding, D.R. Spence, Prediction of Holdup in Two-Phase Flow, Int. J. Engg. Fluid Mech. 1 (1988) 67-82.

3. G.B. Wallis, One dimensional two-phase flow. McGrew-Hill Book Co. Inc., New York, (1969).

4. G.W. Govier, K. Aziz, The Flow of Complex Mixtures in Pipes. Van Nostran Reinhold, New York City, (1972).

5. G. Hestroni, Handbook of Multiphase Systems. Hemisphere Publishing Corp., Washington, DC, (1982).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Study of Prediction of Gas Hold up Using ANN;Communications in Computer and Information Science;2022

2. Bed Expansion in Two-Phase Liquid–Solid Fluidized Beds with Non-Newtonian Fluids and ANN Modelling;Advances in Intelligent Systems and Computing;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3