Application of the Least Squares Support Vector Machine for Life Prediction of Vital Parts

Author:

Wang Hong Kai1,Ma Ji Sheng1,Fang Li Qing1,Wu Da Lin1,Yang Yan Feng1

Affiliation:

1. Mechanical Engineering College

Abstract

In order to better study the wear state of vital parts of the large scale equipment, and overcoming the disadvantage of small sample of vital parts, we use the least squares support vector machine (LS_SVM) algorithm to predict the wear state of vital parts. Using of quantum particle swarm optimization (QPSO) to optimize parameters least squares support vector machine, and achieved good results. Compared those with the method that use of curve fitting to predict the data development trend, show that this method is superior to the curve fitting method, and has good application value.

Publisher

Trans Tech Publications, Ltd.

Reference4 articles.

1. Vapnik Vladimir N. 2000 The Nature of Statistical Learning Theory, M. Springer -Verlag, New York, Inc.

2. Burges J C. 1999 A Tutorial on Support Vector Machines for Pattern Recognition, M. Kluwer Academic Publishers, Boston.

3. Yan Weiwu, Shao Huihe. 2003 Application of support vector machines and least squares support vector machines to heart disease diagnose, J. Control and Decision. 3(18): 358-360.

4. SHAN Yan, Xu Wenbo, SUN Ju. 2006 Application of quantum-behaved particle swarm optimization in training support vector machine, J. Computer Application. 26(11): 2645-2647, 2677.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3