Modal Analysis of Transient Liquid Sloshing in Partially-Filled Tanks

Author:

Zheng Xue Lian1,Li Xian Sheng1,Ren Yuan Yuan1,Cheng Zhu Qing1

Affiliation:

1. Jilin University

Abstract

To investigate the dynamic characteristics of liquid sloshing in partially-filled tanks, FLUENT simulation for liquid sloshing in cylinder tanks with the 40% liquid fill level and subject to lateral accelerations of 0.1 g-0.4 g were carried out. By the observation of transient sloshing force and the liquid free surface, it was found that the liquid sloshing is a periodic oscillation. Fourier transform was utilized to transform the sloshing forces in the time domain to the signals in the frequency domain. By spectrum analysis, it was found that the first-order oscillation that has the biggest amplitude is the most important one for liquid sloshing. For further command on liquid sloshing, modal shapes for the first sixth modal were acquired by ANSYS. It is drawn that the odd modals have anti-symmetrical shapes and the first-order oscillation makes the biggest contribution on liquid sloshing, the even modals have symmetrical shapes and could not contribute to liquid sloshing.

Publisher

Trans Tech Publications, Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3