Relational Similarity Measure: An Approach Combining Wikipedia and WordNet

Author:

Cao Yan Jiao1,Lu Zhao1,Cai Song Mei1

Affiliation:

1. East China Normal University

Abstract

Relational similarities between two pairs of words are the degrees of their semantic relations. Vector Space Model (VSM) is used to measure the relational similarity between two pairs of words, however it needs create patterns manually and these patterns are limited. Recently, Latent Relational Analysis (LRA) is proposed and achieves state-of-art results. However, it is time-consuming and cannot express implicit semantic relations. In this study, we propose a new approach to measure relational similarities between two pairs of words by combining Wordnet3.0 and the Web-Wikipedia, thus implicit semantic relations from the very large corpus can be mined. The proposed approach mainly possesses two characters: (1) A new method is proposed in the pattern extraction step, which considers various part-of-speeches of words. (2)Wordnet3.0 is applied to calculate the semantic relatedness between a pair of words so that the implicit semantic relation of the two words can be expressed. Experimental evaluation based on the 374 SAT multiple-choice word-analogy questions, the precision of the proposed approach is 43.9%, which is lower than that of LRA suggested by Turney in 2005, but the suggested approach mainly focuses on mining the semantic relations among words.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hybrid Approach for Relational Similarity Measurement;Database Systems for Advanced Applications;2013

2. Relational Similarity Measurement between Word-pairs Using Multi-Task Lasso;2012 International Conference on Cloud and Service Computing;2012-11

3. Chinese Latent Relational Search Based on Relational Similarity;Data and Knowledge Engineering;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3