Performance Analysis of Directional Control Valve: An Overview

Author:

Paswan Ramashankar1,Das Jayanta1,Kumar N.1,Kumar Ajit1,Mishra Santosh Kumar1,Sujit Kumar1

Affiliation:

1. ISM

Abstract

Directional control valves start, stop or change the direction of flow in compressed air applications. To understand the different applications of compressed air and how valves are used, one must first have knowledge of the kinds and types of valves used by industries. This paper studies local valve control of the electro-hydraulic system. The slow response of hydraulic control valve usually becomes the hold-up of whole system performance. Although fast valves (e.g. high-bandwidth servo-valves) are available, they are far more expensive than slow valves (e.g. proportional directional control valves). To improve the performance of proportional directional control valves, three different types of controllers are synthesized. Firstly, based on the pole zero cancellation technique, an open loop compensator is designed which requires the accurate valve dynamic model information; Secondly, a full state feedback adaptive robust controller (ARC) is synthesized, which effectively takes into account the effect of parametric uncertainties and uncertain nonlinearities such as friction force and flow force. Finally, an output feedback ARC controller is synthesized to address the problem of un measurable states. Keywords: valve, hydraulic device, Simulink.

Publisher

Trans Tech Publications, Ltd.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pneumatic brake valves used in vehicle trailers – A review;Engineering Failure Analysis;2024-04

2. Modelling of a hydraulically actuated four bar loading dock lift;AIP Conference Proceedings;2024

3. State feedback spool position control with integral compensation for servo proportional valve;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-03-10

4. The quality control technology of inner surface of valve sleeve in abrasive flow machining;The International Journal of Advanced Manufacturing Technology;2022-06-17

5. Composite wing structure of light amphibious airplane design, optimization, and experimental testing;Heliyon;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3