An Improved Binary Relevance Algorithm for Multi-Label Classification

Author:

Guo Tao1,Li Gui Yang1

Affiliation:

1. Sichuan Normal University

Abstract

Multi-label classification (MLC) is a machine learning task aiming to predict multiple labels for a given instance. The widely known binary relevance (BR) learns one classifier for each label without considering the correlation among labels. In this paper, an improved binary relevance algorithm (IBRAM) is proposed. This algorithm is derived form binary relevance method. It sets two layers to decompose the multi-label classification problem into L independent binary classification problems respectively. In the first layer, binary classifier is built one for each label. In the second layer, the label information from the first layer is fully used to help to generate final predicting by consider the correlation among labels. Experiments on benchmark datasets validate the effectiveness of proposed approach against other well-established methods.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-label Classification of Short Text Based on Similarity Graph and Restart Random Walk Model;IFIP Advances in Information and Communication Technology;2020

2. Improved Conditional Dependency Networks for Multi-label Classification;2015 Seventh International Conference on Measuring Technology and Mechatronics Automation;2015-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3