Development of a Railway Track Displacement Monitoring by Using Digital Image Correlation Technique

Author:

Iryani Lenny1,Setiawan Hery1,Dirgantara Tatacipta1,Putra Ichsan Setya1

Affiliation:

1. Institut Teknologi Bandung

Abstract

To avoid an unnecessary catastrophic accident due to a failure of a railway track, it is important to have a reliable condition monitoring system for the railway track. The integrity of the railway track can be assessed by monitoring the displacement field of the track, which can then be used to determine the strain and stress field. By knowing the stress history of the track and the S–N curves of the track material, the remaining life of the railway track can be predicted. In the present work, a simple system to monitor and record the displacement field of the railway track has been developed by using Digital Image Correlation (DIC) technique. The set–up to monitor the displacement field of the railway track was developed using a high speed video camera of Nikon J1 to capture the image of the railway track when the train passing through. The DIC technique was then employed off line to measure the displacement field of the 2D image captured. The results showed that the full field displacement measured by using DIC technique gives a good agreement compared to the finite element results. The full field displacement can be used to calculate the strain-stress field, and later on the remaining life assessment can be conducted based on the results.

Publisher

Trans Tech Publications, Ltd.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of an Integrated Computing Platform for Measuring, Predicting, and Analyzing the Profile-Specific Fixity of Railway Tracks;Transportation Research Record: Journal of the Transportation Research Board;2024-05-04

2. Monitoring Deformation along Railway Systems Combining Multi-Temporal InSAR and LiDAR Data;Remote Sensing;2019-10-02

3. Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data;Sensors;2018-01-31

4. Experimental analysis of railway track settlement in transition zones;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2017-12-28

5. Measurement of rail deflection on soft subgrades using DIC;Proceedings of the Institution of Civil Engineers - Geotechnical Engineering;2016-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3