Study of Data Fusion Method for Fault Diagnosis Based on FDR Feature Selection Algorithm and HMM/SVM Model

Author:

Li Sheng1,Zhang Chun Liang2,Hu Liang Bin1

Affiliation:

1. University of South China

2. Guangzhou University

Abstract

To effectively avoid the loss of useful information, in this paper, we extract feature information from the fault signal of rotating machinery in different aspects such as amplitude-domain, time-domain and time-frequency domain. Then for the multi-dimensional feature extraction is prone to the problem of “dimension disaster”, introduce the principles of FDR in data mining to determine the classification ability of each individual feature, and introduce the cross correlation coefficient to solve the problem that dealing with individual feature neglects the interrelationship between the features, and construct a new feature level data fusion algorithm. Finally, According to the characteristics of the HMM (Hidden Markov model), SVM (Support Vector Machine) and its hybrid model, we construct a new decision-level data fusion model.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3