Effect of Annealing Temperatures on Formation of Na0.5Bi0.5TiO3 and (Na0.5Bi0.5)0.96Ba0.04TiO3 Ceramics Prepared via Sol Gel Method

Author:

Haji Jumali Mohammad Hafizuddin1,Mohamad Siti Mariam1,Awang Rozidawati1,Yahaya Muhammad1,Said Mohd Riduan M.2,Salleh Muhammad Mat3

Affiliation:

1. University Kebangsaan Malaysia

2. University Kebangsaan Malaysia (UKM)

3. Universiti Kebangsaan Malaysia (UKM)

Abstract

The effect of annealing temperatures on the formation of pure perovskite Na0.5Bi0.5TiO3 (NBT) based ceramics prepared by sol gel method has been investigated. The NBT sol was prepared using NaCH3COO, C6H9BiO6 and Ti(C4H9)4 with 2-methoxyethanol and glacial acetic acid were used as solvents. The BaTiO3 sol was synthesized using C4H6BaO4 and Ti(C4H9)4 with acetic acid and ethanolamine were used as solvents. The (Na0.5Bi0.5)0.96Ba0.04TiO3 (NBBT) sol was prepared by mixing appropriate amount of NBT and BaTiO3 sols. Then NBT and NBBT sols were dried at 200oC for 24 h, ground and subsequently annealed at temperatures ranging from 440oC – 640oC for 5 min. Formation of NBT and NBBT ceramics was examined using XRD technique. X-ray diffractograms reveal that the NBT ceramic with rhombohedral structure starts to form at 540oC and complete crystallization is achieved at 620oC. Addition of 4vol% of BaTiO3 sols drastically reduces the crystallization temperature of NBBT ceramic to 460oC and a pure single phase ceramic is achieved at 520oC. Despite retaining the same rhombohedral structure, the NBBT exhibits lattice parameters expansion indicating a successful Ba substitution which is also confirms by the absence of BaTiO3 peaks in the diffractograms. Both ceramics exhibit great thermal stability with additional increment in annealing temperatures.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3