The Analysis and Evaluation Method of Assembly Accuracy Reliability of Heavy Duty Machine Tool

Author:

Cheng Feng Lan1,Jiang Bin1,Li Ying1,Zheng Min Li1

Affiliation:

1. Harbin University of Science and Technology

Abstract

Geometry constraint and physical constraint change because the structure is complex, tonnage is large, and assembly load is complex on heavy duty machine tool, assembly relation is changed for repeated assembly, then, the assembly accuracy reproducibility and assembly accuracy retentivity decline, which results in the decrease of assembly reliability. According to this problem, the interaction of geometry constraint and physical constraint is discussed in this paper, the influence factors of assembly accuracy reproducibility and assembly accuracy retentivity are respectively analyzed, the establishing, demolition and re-establishing of assembly relation effects assembly accuracy reproducibility, and evolution of assembly relation with time effects assembly accuracy retentivity, which are respectively revealed. Using margin method to evaluate assembly accuracy reliability, the criterion and evaluation method of assembly accuracy reliability is proposed, in order to provide reliable and quantitative criterion for assembly process design, and reasonably set safety margin of geometry constraint and physical constraint, form reliable assembly process, realize that the assembly accuracy is controlled and improved by assembly.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference8 articles.

1. Y.M. Zhang and X.Z. Huang: Journal of Mechanical Engineering. Vol. 45(2009), pp.105-109.

2. Y. Zhang and M.S. Yang: Journal of Mechanical Engineering. Vol. 43(2007), pp.1-6.

3. N.K.S. Lee and H.Y. Grace: Journal of Manufacturing Science and Engineering. Vol. (2003), pp.595-599.

4. M.V. Raj and S.S. Sankar: International Journal Advanced Manufacturing Technology. Vol. 57(2011), pp.795-810.

5. C.W. Tan and T.G. Lim: IEEE Transactions on advanced packaging. Vol. 32(2009), pp.650-655.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3