Light Trapping Potential of Hexagonal Array Silicon Nanohole Structure for Solar Cell Application

Author:

Yahaya Nor Afifah1,Yamada Noboru1,Nakayama Tadachika1

Affiliation:

1. Nagaoka University of Technology

Abstract

The reflectance of the hexagonal array silicon nanohole structure was systematically studied using various measurements and through simulations. It was found that the hexagonal array silicon nanohole can reduce the reflectance along the entire spectrum range by approximately 6%. It is suggested that the enhancement of the electric field intensity at short wavelength is mainly due to the large surface area provided by the nanohole structure, while multiple reflections occurring in the nanohole contribute to electric field enhancement in the long wavelength range. In addition, the simulation of a hexagonal array silicon nanohole coated with a thin layer of indium tin oxide (ITO) was carried out. The results show that reflectance is greatly decreased along nearly the entire spectrum range, except from 400 nm to 440 nm, and almost zero reflectance is achieved at wavelengths from 650 nm to 750 nm. The results provide a practical guideline to the design and fabrication of a low-reflectance, and as a consequence, a high-efficiency hexagonal array silicon nanohole solar cell.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3