Effect of Surface Roughness on Nanocontact: Quasicontinuum Simulation

Author:

Jiang Wu Gui1,Wang Zheng Wei1

Affiliation:

1. Nanchang Hangkong University

Abstract

By using the two-dimensional quasicontinuum method, the nanocontact between Ni indenter and single crystal Cu substrate with a smooth or rough surface is simulated. The contact force varies in a nonlinear fashion with the increasing indenter displacement, including several force drops. The atomic-scale deformation mechanism in the Cu substrate during nanocontact process is monitored. Shockley partials, Lomer-Cottrel locks as well as twinning faults are observed at the force drops. The Lomer-Cottrel locks play an important role in smooth surface nanocontact process, and they insure that Cu substrate undergoes elastic deformation dominantly during nanocontact process. The contact forces calculated from the Maugis-Dugale (M-D) theory show a good agreement with those obtained by the QC simulation in the smooth surface nanocontact process. It must be noted that the M-D theory is no longer suitable to describe the rough surface nanocontact problem due to the severe plastic deformation in the asperities of the substrate when the characteristic size of roughness is on the order of the indenter depth.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3