Microstructure of TIG Melted Composite Coating on Steel Produced Using 1.0 and 1.5 mg/mm2 TiC at an Energy Input of 2640 J/mm

Author:

M. Idriss A.N.1,Mridha S.1

Affiliation:

1. International Islamic University of Malaysia

Abstract

Surface modification by reinforcing ceramic particulates can give protection against wear and corrosion of metal. In this work, two different amounts of TiC powder of nominal size 45 to 100 µm were embedded on AISI 4340 steel surfaces by melting under a Tungsten Inert Gas (TIG) welding torch with an energy input of 2640 J/mm. The microstructure, geometry and hardness of the single track composite layers were investigated. The resolidified melt tracks were hemispherical in shape. With increasing TiC content, the melt dimensions reduced a little but the microstructure had a remarkable change. The track with 1.5 mg/mm2 TiC gave more un-melted TiC, partially melted TiC and agglomeration of ceramic particulates while the 1.0 mg/mm2 track dissolved most TiC particulates and precipitated carbides in the form of dendrite, globular and flower type particles; dendrites are almost absent in the 1.5 mg/mm2 track. A reduced TiC addition created more fluid melt which accelerated dissolution of TiC and that caused more carbide precipitation in the 1.0 mg/mm2 track compared to that with 1.5 mg/mm2 track. The 1.0 mg/mm2 track produced lower hardness of 1065 Hv compared to 1350 Hv for the 1.5 mg/mm2 track.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthetization of TiC surface hardening using TIG melting technique - The effect of working distance;IOP Conference Series: Materials Science and Engineering;2022-06-01

2. TIG Torch Melting as Surface Engineering Technology;Encyclopedia of Renewable and Sustainable Materials;2020

3. Processing of Ceramic Composite Coating via TIG Torch Welding Technique;Encyclopedia of Renewable and Sustainable Materials;2020

4. TIG torch surfacing of metallic materials – a critical review;Transactions of the IMF;2018-12-24

5. Melting of SiC powders preplaced duplex stainless steel using TIG welding;IOP Conference Series: Materials Science and Engineering;2018-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3