Recent Progress in Hydrogen Storage Characteristics of Ti-Based Icosahedral Quasicrystal Alloys

Author:

Yang Da Peng1

Affiliation:

1. Jilin University

Abstract

cosahedral quasicrystalline phase (I-phase) formed in a number of Ti-based alloys, and the I-phase is well ordered and thermodynamically stable in the alloys. Because Ti-based icosahedral (i) quasicrystal phases, which have a new type of translational long-range order and display noncrystallographic rotational symmetry, are believed to possess a large number of tetrahedral interstitial sites in their quasilattices. Ti-based I-phase alloy was considered as one of the most promising hydrogen storage materials due to thermodynamical stability, suitable chemistry affinity and low cost. Recent year, the Ti-based I-phase alloys containing crystal or amorphous phases were prepared, and microstructure and hydrogen storage characteristics were investigated. Ti-based I-phase alloy becomes one of the most promising hydrogen storage materials due to thermodynamical stability, low cost and high hydrogen capacity, and exhibited good electrochemical hydrogen storage capacity and cycle life property.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3