Analysis of Coupled Lattice Boltzmann Model with Well-Balanced Scheme for Shallow Water Flow

Author:

Lan Zhi Cong1,Huang Ping1

Affiliation:

1. Sun Yat-sen University

Abstract

The coupled lattice Boltzmann method (CLBM) is applied in investigating contamination transport in shallow water flows. Shallow water equations and advection-diffusion equation are both solved using lattice Boltzmann method (LBM) on a D2Q9 square lattice and Bhatnagar-Gross-Krook (BGK) term. For extending application of CLBM in shallow water flows, the well-balanced scheme is introduced to replace the source term. Three cases including dam break, 2D pure diffusion and complex tidal flow are calculated and analyzed. Dam break and 2D pure diffusion are prepared to validate the flow module and water quality module, respectively. Both the cases show satisfactory consistency between predicting results and analytical solutions. Since clear reproduction of the shock wave propagation and precise prediction of contamination transport are derived, LBM is proved to be the numerical method naturally conservative with acceptable computing error. Furthermore, complex tidal flow with irregular geometry and sinus-varied bathymetry is simulated by adopting the well-balanced treating on the source term. The velocity fields, water levels, and water quality are compared between the ebb tide and flood tide, the results of which are in excellent accordance with the physical laws during the process. Hence, it may demonstrate that improved by well-balanced scheme CLBM can be widely applicable in shallow water flow.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3