Affiliation:
1. Xi'an Jiaotong University
2. Xi ’an Jiaotong University
Abstract
Oxidation of iron sulfide in supercritical water was investigated in the batch reactor. Iron sulfide was converted in two parallel processes: gasification by water and oxidation by oxygen. Assuming that the reaction order of H2O was 0, the activation energy and pre-exponential factor of the gasification process were determined to be 43kJ mol-1 and 22.4 min-1, correspondingly. It is found that above 773K the oxidation process was limited by the mass transfer of O2 to particles surface. Below 773K, with an assumption of zero order in H2O concentration and first-order reaction in oxygen concentration, the activation energy and pre-exponential factor for the rate of oxidation were estimated as154kJ mol-1 and 1.7×106m3 mol-1 min-1, respectively. With supercritical water oxidation under the experimental conditions, the sulfur-containing components in the product were sulfide, sulfite and sulfate, in which sulfide and sulfate were predominant. It is likely to completely convert the sulfur to the sulfate by supercritical water oxidation using high temperature and long reaction time. The reaction pathway of iron sulfide could be expressed as: iron sulfide → sulfide → sulfite → sulfate.
Publisher
Trans Tech Publications, Ltd.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献