Sulfur Content Reduction and Iron Grade Improvement of V-Ti Magnetite Concentrate by Combining Reverse Flotation and Magnetic Separation

Author:

Deng Jiu Shuai1,Wen Shu Ming1,Bai Shao Jun1,Xie Mei Fang1,Shen Hai Ying1

Affiliation:

1. Kunming University of Science and Technology

Abstract

For low-grade iron ore, smelting costs and resource wastage will be increased. Product quality of such ore is affected adversely by an excessive amount of sulfur. This also causes environmental pollution. In accordance with the vanadium-titanium (V-Ti) magnetite concentrate properties with low iron grade and high sulfur content, the joint process of magnetic separation and flotation was carried out. Magnetic separation was conducted to increase the iron grade, while reverse flotation was used to reduce sulfur content. Results show that the feeding mainly contains titanomagnetite, hematite, and pyrite. The sulfur was primarily found in pyrite. The separation effect was influenced by the grinding fineness, magnetic intensity, collector type and dosage, and pH value. At a grinding fineness of −45 μm accounting for 87%, most of the iron minerals exhibited monomer dissociation. An open-circuit experiment was carried out under the best conditions of magnetic intensity, as well as collector and modifier dosage. Good experimental results were obtained as follows: the iron grade increased to 57.17%, iron recovery was 89.94%, sulfur content decreased from 0.66% to 0.26%, reverse flotation of sulfur foam concentrate contained almost 15.68% sulfur, the upgrade ratio was about 23, and the cobalt in the sulfur concentrate was enriched 20-fold. A method for improving the comprehensive utilization level and effect of mineral resources is provided in this study.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3