Microstructure and Dry Sliding Wear Behavior of Laser Cladding (TiC+TiN)-NiCrWC Powder Composite Coating on DZ125 Superalloy

Author:

Zhou Jun1,Xie Fa Qin2,Jia Jing Fang3,Lin Nai Ming4,Wu Xiang Qing2

Affiliation:

1. China Ship Development and Design Center

2. Northwestern Polytechnical University

3. Wuhan Biolake New Drug Incubation Public Service Platform

4. Taiyuan University of Technology

Abstract

Ni-based TiN-TiC composite coating was fabricated on DZ125 superalloy surface by laser cladding. The phase constitution and microstructures were investigated by means of X-ray diffraction (XRD), optical microscope (OM) and scanning electron microscope (SEM). Microhardness measurements and wear experiments without lubrication were also accomplished. The experimental results showed that a pore- and crack-free coating with metallurgical bonding to the substrate was obtained. Solidification morphologies along the section of the coating varied from directional dendrite in the interface to random dendrite in the surface. The coating was mainly composed of γ-Ni, M23C6, TiN, TiC particles and a small amount of NiTi, respectively. The average microhardness of 705HK for the coating was 2.3 times higher than that of the substrate. Wear tests indicated that wear resistance of the coating was significantly improved compared with that of the substrate. The improvement in hardness and wear resistance was attributed to TiN and TiC phase and chromium carbide uniformly dispersed in the matrix of the Ni-based TiN-TiC composite coating.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3