Feature Extraction Technique of Acoustic Target Based on Wavelet Packet Energy and Principal Component Analysis

Author:

Lü Yong Lin1,Zi Zheng Hua2

Affiliation:

1. Chuxiong Normal University

2. Kunming Institute of Physics

Abstract

A feature extraction method based on wavelet packet energy distribution and correlation coefficient has been put forward to recognize the different acoustic targets in this paper. In view of the characteristics of acoustic target, we employed principal component analysis (PCA) to compress data set of the features extracted based on wavelet packet energy distribution and correlation coefficient. The results have been inputted into the neural network as eigenvectors for pattern recognition. Simulation results indicate that the method suggested in this paper have a recognition rate better than 8% with only wavelet packet energy method, thus verifying its effectiveness .

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference6 articles.

1. Michael V. Namorato. A concise history of acoustics in warfare. Applied Acoustics. 59 (2000): 101~135.

2. Dr. Russell Braunling, Randy M. Jensen, Michael A. Gallo. Acoustic target detection, tracking, classification, and location in a multiple target environment. Proceedings of SPIE. Vol. 3081, (1997): 57~66.

3. Lü yong lin . Research and realization of system of acoustic target recognition. Tian jin: Tian jin university, (2007).

4. Fan Haining, Guo Ying, Wu J ianfeng, Chen Zhiwu. Abstract ion of sound signal characterist ics based on wavelet packet decomposition . Moden electrice tehcnique 2005(4): 20~21.

5. Fan jincheng, Mei changlin. Data analysis. Beijing: Science Press, (2002).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3