A Stochastic Finite Element Heterogeneous Multiscale Method for Seepage Field in Heterogeneous Ground

Author:

Xia Yan Hua1

Affiliation:

1. Anhui University of Science and Technology

Abstract

The finite element heterogeneous multiscale method (FEHM) combined with stochastic collocation method (SCM) called SHMFE is applied to studying the seepage field of naturally heterogeneous multiscale subsurface formations. Kinds of stochastic finite element (SFEM) are mainly computational techniques for the class of problems. But those methods do not report the multiscale nature of the properties of subsurface formations. When the random permeability field is heterogeneous in fine scale comparing to study domain, the simulation by the classic SFEM is not a trivial task. The SHMFE can efficiently solve the problems. In the method, Karhunen-Loµeve (KL) decomposition is used to represent the log hydraulic conductivity Y = lnKεin fine scale. The SCM which couples the generalized polynomial chaos is used to make the problem determined, and then the FEHM method is used to solve it. Sparse grid stochastic collocation method is used when KL expansion has many random variables. The numerical examples demonstrate that the SHMFE approach can efficiently simulate the flow in naturally multiscale heterogeneous subsurface formations with relatively lower computational cost comparing with the SFEM methods.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3