Limiting Product Surface and its Use in Profile Milling Design Operations

Author:

Fomin A.A.1

Affiliation:

1. Vladimir State University

Abstract

The article establishes the analytical relationships linking the geometric parameters of the shaping cutters. A mathematical model describing the geometrical errors caused by the discrete process of product profile milling with shaping cutters was developed. It was specified based on the model that the distribution of errors on the surface treated with cylindrical and shaping cutters is significantly different. It is found that the errors due to the kinematics of the cylindrical milling process, are constant at value irrespectively of the considered cross section of the cutting tooth, and the errors after the milling significantly differ in the distance function of considered transverse plane from its geometric center. The maximum error occurs in the local longitudinal planes of the product, the profile of which is located at the maximum distance from the mounting technological base of product's surface. The plane of the product, where the maximum geometrical errors are formed during the profile milling is called limiting surface. The design of technological process is performed in the product profile geometry, formed in this plane. The rule of spacious arrangement location of the limiting surface of the product according to its drawing. Using the limiting surface in the design of the operation of profile milling with shaping cutters significantly reduces the duration of the design procedure and eliminates the cost of production on experimental studies related to ensuring the geometric accuracy of products at the initial stage of their production.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3