The Concept of the System for Parameterization of Functionalized Membranes

Author:

Skowroński Jarosław1,Bojarska Marta2,Neska Mirosław1

Affiliation:

1. National Research Institute

2. Warsaw University of Technology

Abstract

Microbial biofilm formation on membrane surface layer (biofouling) impedes filtration processes through increased material-and energy consumption and causes the risk of contamination by microorganisms and their metabolites. Due to the constantly growing resistance of microorganisms to the commonly used methods of prevention, it is necessary to develop functionalised materials and coatings of stable, non-specific, and effective antimicrobial properties. The integral step in the process of the development of such materials and coatings is universal and reliable testing under process conditions. The intensity of biological fouling is proportional to the microbial cell concentration in the system. Potentially present organisms are systematically varied and may include bacteria, fungi, and microscopic plants. The most convenient and universal method for microbial cell concentration assessment features the measurement of optical density of the liquid. Moreover, biofilm formation is dependent on the physiochemical factors, such as temperature, the chemical composition of feed liquid, membrane material, process flows, and pressures, etc. Additionally, process conditions may affect the activity of the functionalised material used for membrane formation. For this purpose, an integrated approach for multiparameteric assessment is needed, taking into account the measurements of the above listed parameters and allowing for comparisons. The proposed modular test stand includes a number of actuators and measurement sensors, which enable the following control functions: the control over the process fluid flow, the control over the emission on the test object of electromagnetic radiation in the required spectrum, and implementation of the optical density measurements of the fluid. The whole installation test is placed in one closed cubature of controlled thermal conditions. The control system allows the recording and archiving of process data, which are collected (on-line) by a PLC and transferred to a PC via Ethernet interface. Dedicated software application on the PC provides a preliminary analysis and allows remote monitoring via a web browser. Remote access to measurement data can also be used for the creation of a network of series of such test stands, in which different aspects of the studied phenomenon are simultaneously analysed and controlled as the modules of a network control system (NCS). The described system will allow the multiparameteric, universal and reliable assessment of antimicrobial properties of functionalised membranes under process conditions. The modular character of the proposed approach will be fully reconfigurable and adaptive for a wide range of membrane types. The results to be obtained will support the process of sustainable membrane development.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Reference16 articles.

1. Strathmann H., Giorno L., Drioli E., An introduction to membrane science and technology, CNR, Roma (2006).

2. Wang L.K., Chen J.P., Hung Y.T., Shammas N.K., Membrane and desalination technologies, Handbook of environmental engineering, 2011, Vol. 13.

3. Czaczyk K., Myszka K., Mechanizmy warunkujące oporność biofilmów bakteryjnych na czynniki antymikrobiologiczne, Biotechnologia, 2003, Vol. 76, Nr. 1, 40-52 (in Polish).

4. Jaworski A., Serwecińska L., Stączek P., Quorum sensing – komunikowanie się komórek w populacjach bakterii przy udziale chemicznych cząstek sygnałowych., Postępy mikrobiologii, 2005, Vol. 2, 231-256 (in Polish).

5. Flemming H. C., Wingender J., The biofilm matrix, Nature Reviews Microbiology, 2010, Vol. 8, 623-633.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3