Valence-Mending Passivation of Si(100) Surface: Principle, Practice and Application

Author:

Tao Meng1

Affiliation:

1. Arizona State University

Abstract

Surface states have hindered and degraded many semiconductor devices since the Bardeen era. Surface states originate from dangling bonds on the surface. This paper discusses a generic solution to surface states, i.e. valence-mending passivation. For the Si (100) surface, a single atomic layer of valence-mending sulfur, selenium or tellurium can terminate ~99% of the dangling bonds, while group VII fluorine or chlorine can terminate the remaining 1%. Valence-mending passivation of Si (100) has been demonstrated using CVD, MBE and solution passivation. The keys to valence-mending passivation include an atomically-clean Si (100) surface for passivation and precisely one monolayer of valence-mending atoms on the surface. The passivated surface exhibits unprecedented properties. Electronically the Schottky barrier height between various metals and valence-mended Si (100) now follows more closely the Mott-Schottky theory. With metals of extreme workfunctions, new records for low and high Schottky barriers are created on Si (100). The highest barrier so far is 1.14 eV, i.e. a larger-than-bandgap barrier, and the lowest barrier is below 0.08 eV and potentially negative. Chemically silicidation between metal and valence-mended Si (100) is suppressed up to 500 °C, and the thermally-stable record Schottky barriers enable their applications in nanoelectronic, optoelectronic and photovoltaic devices. Another application is transition metal dichalcogenides. Valence-mended Si (100) is an ideal starting surface for growth of dichalcogenides, as it provides only van der Waals bonding to the dichalcogenide.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3