Magneto-Electronic Phase Separation in La0.7Sr0.3MnO3 with Metallic Behavior in Paramagnetic Region

Author:

Ryzhov V.A.1,Khavronin Vladimir P.1,Deriglazov Vladimir V.1,Mukovskii Yakov M.2,Chichkov Vladimir I.2

Affiliation:

1. Russian Academy of Sciences

2. NITU “MISiS”

Abstract

The data on transport and magnetic properties (ac linear and nonlinear (second and third orders) susceptibilities) are presented for La0.7Sr0.3MnO3 single crystal with metallic behavior in paramagnetic (PM) region and ferromagnetic (FM) metallic ground state. The FM clusters originate in the PM matrix of the compound below some temperature T* > 425 K, their nonlinear response being weakly T-dependent down to 367 K. This was attributed to clusters arising in the preferable sites formed by chemical inhomogeneities introduced by doping. On cooling below T# ≈ 366 K > TC ≈ 363.3 K, a fast growth of cluster response without the change of its parameters is observed that was attributed to the development of homogeneous nucleation of the FM clusters. The latter stage continues below TC and is accompanied by a crossover to the steeper decreasing of resistivity with cooling that suggests metallic properties of the clusters. The cluster nonlinear response masks completely that of matrix at T = 360.3 K < TC, where it is well described by the model of ensemble of magnetic single-domain nanoparticles in superparamagnetic regime based on the formalism involving Gilbert-Landau-Lifshits equation. Below TD = 359.6 K at the stage of domain formation, a weak interaction of matrix and cluster subsystems leads to their mutual ordering, which is accompanied by a sharp decrease of the nonlinear response to a weak ac field in small steady field H. The latter suggests an “antiferromagnetic” type of arrangement of these subsystems that provides decreasing the magnetostatic energy of the sample.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3