Synthesis and Characterization of Novel Multipods-Branched Cd-Se-S Micro-/Nano-Structures

Author:

Li Hong1,Zhang Yu1,Wang Cheng Biao1,Peng Zhi Jian1,Fu Xiu Li2

Affiliation:

1. China University of Geosciences

2. Beijing University of Posts and Telecommunications

Abstract

Novel multipods-branched Cd-Se-S micro-/nanostructures (MNSs) were successfully prepared in a tube furnace by thermal evaporation under atmospheric pressure through using high-purity CdS and CdSe mixture powder with a molar ratio of 1:1 as evaporation source, high-purity Ar gas as carrier and protective gas, and mica wafer as substrate. Under the optimum condition, the evaporation temperature was 1100 °C, Ar gas flow rate was 200 sccm, and the distance between the evaporation source and substrate was 22 cm. The microstructure examination revealed that the length of the obtained branches was up to tens of microns and the diameter of the branches was of a few microns. The composition and crystal structure analyses indicated that, the chemical composition of the multipods-branched Cd-Se-S MNSs was CdSe0.86S0.14, which had a hexagonal structure and good crystallinity. The photoluminescence spectrum at room temperature displays an intrinsic emission peak around 620 nm. In addition, their growth might be controlled by a vapor-solid mechanism.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3