Cavitation Erosion-Corrosion Resistance of Deposited Austenitic Stainless Steel/E308L-17 Electrode

Author:

Alwan Hussam L.1,Korobov Yury S.1,Soboleva N.N.2,Lezhnin N.V.3,Makarov A.V.4,Nikolaeva E.P.2,Deviatiarov M.S.5

Affiliation:

1. Ural Federal University named after the first President of Russia B.N. Yeltsin

2. Ural Federal University

3. M.N. Miheev Institute of Metal Physics

4. Ural Federal University named after the first President of Russia B. N. Yeltsin

5. Ural Welding Institute-Metallurgy

Abstract

The ultrasonic vibratory test was carried out to evaluate the cavitation erosion/corrosion resistance of welded-deposited austenitic stainless steel/E308L-17. Three layers of the E308L-17 electrode were deposited onto AISI 1040 substrate utilizing Shielded Metal Arc Welding (SMAW) process. The eroded surfaces of the E308L welded deposit/coating and AISI 1040 substrate steel have been analyzed by evaluating surface topography, as well as scanning electron microscope (SEM) micrographs. In addition, the cumulative weight loss and erosion rate curves were attained to evaluate the cavitation resistance of the tested materials. The cavitation results showed that the E308L-17 deposited stainless steel has lost about 15 mg as a cumulative weight, while the loss of AISI 1040 substrate was about 123 mg. This is equal to 0.12% and 1.0% of the original test specimen weight for the E308L-17 and AISI 1040, respectively. Consequently, E308L-17 austenitic stainless steel can be effectively used as a protective material for surfaces exposed to cavitation wear, since the AISI 1040 substrate has been enhanced by 8 times using E308L stainless steel.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3