Affiliation:
1. Siberian Branch of the Russian Academy of Sciences
2. ITMO University
3. Tennessee State University
4. CICESE
Abstract
Following the fundamental work by Bazaron, Bulgadaev and Derjaguin [6] on the observation of shear elasticity of low viscous liquids, we build on this study by examining viscous liquids, polymers and suspensions of nanoparticles. In this paper, we review our past and current efforts in these areas. The mechanical properties of liquids, polymers and nanosuspensions have been studied at relatively low frequencies of 105 Hz. The real and imaginary shear moduli of these samples were obtained on equipment using the acoustic resonance technique. It was shown that the shear modulus and viscosity decreases with increasing shear deformation. The behavior of viscoelastic fluids near surfaces is similar to that of colloidal and polymer suspensions, suggesting that the liquid component is determined by the mechanical response of suspensions.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dynamic viscosity of dispersion of silica dioxide nanoparticles;IOP Conference Series: Materials Science and Engineering;2020-12-01