Homo- and Hetero-Structure Formation in Semiconductors by Laser Radiation: First Stage of Quantum Cones Formation

Author:

Medvids Artur1,Onufrijevs Pavels1,Dauksta Edvins1,Sobolev Nikolai A.2

Affiliation:

1. Riga Technical University

2. Universidade de Aveiro

Abstract

A possibility of formingquantum cones (QC) by Nd:YAG laser radiation on the surface of semiconductorssuch as Si and Ge crystals, and SiGe and CdZnTe solid solutions has been shown.A two-stage mechanism of quantum cone formation has been proposed. The first stage is generation and redistribution of point defects (impurity atoms and intrinsic point defects – vacancies and self-interstitials) in a temperature gradient field, the so-called thermogradient effect. As a result a new phase is formed on the irradiated surface, for example a Ge phase forms on the surface of a SiGe solid solution. The second stage is characterized by mechanical plastic deformation of the strained top layer leading to the formation of quantum cones, due to selective laser radiation absorption of the top layer. The first stage is more difficult for understanding of the physical processes which takeplace during of growth of QC, especially in pure intrinsic elementary semiconductors (Ge, Si) and compounds (CdTe, GaAs). Therefore, this research is focused on the investigation of the first stage of QC formation by laser irradiation. As a result of the investigation, a new mechanism for p-n junction formation in the elementary semiconductors and heterojunction in solid solutions by laser radiation as a first stage of QC formation is proposed.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3