Design of Concrete Pavement in the Považský Chlmec Tunnel

Author:

Mařík Libor,Bůžek Matěj

Abstract

Construction of the Považský Chlmec Tunnel on the D3 Highway in the stretch Žilina (Strážov) – Žilina (Brodno) is being finished and the last structure before installation of the technological equipment has been a concrete pavement and construction works related to design and construction of the pavement. The paper describes not only the issue of road structural layers according to the regulation TP098 Design of Cement Concrete Pavements on Roads, but especially on a specific example of a tunnel already built we demonstrate general particularities of road surfaces in road and highway tunnels. These are, in particular, engineering requirements on the subgrade and possibilities of its drainage, design of joints of the cement concrete pavement in relation to the tunnel lining design, ensuring the necessary long-term roughness of the road surface, design of entries of utility lines (cables, drains) below the road surface, structural details connected with placement of kerbs and channel drains, lay-bys, impacts of use of self-extinguishing road drainage components in the load bearing system of the tunnel lining and other seemingly independent structures, which, however, in the confined tunnel space influence each other substantially. The paper focuses also on construction of the individual road courses with a recommendation for measures to adopt in order to eliminate damage to the tunnel structures completed (in particular, pavements, channel drains and kerbs), coordination of the other works in the tunnel ensuring safety of all workers, logistics (transport of pavers and cement concrete mix) and other apparently tiny details, which result in safe and fast work when placing the road courses in a restricted tunnel space. In the paper, the authors have taken into account requirements of the road engineering segment and also geotechnical requirements and particularities of the tunnel construction and point out the necessity of a multi-professional approach to the design to achieve an optimal solution. Based on their own experience, at the end of the paper, the authors give recommendations on amending the standards and regulations, which in some cases do not allow for construction of road surfaces in tunnels (i.e. deep under the ground).

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Reference7 articles.

1. Design for building permit - D3 Highway Žilina (Strážov) – Žilina (Brodno) (2006).

2. Štefan, L., Dragoun, R. (2013). Tunel: Skid Resistance Properties of Roadway Surface in Tunnels, 2013, num. 4, Prague: 4 – 7.

3. Rimac, I., Šimun, M., Dimter, S. (2014). e-GFOS 5, 8: Comparison of Pavement Structures in Tunnels, 2014, pages 12 – 18.

4. Bartolomé, C. (2015). Smart Transportation Alliance: The Role of Concrete Pavement in Tunnel Safety, (2015).

5. Liu, J., Zhao, D., Shen, J., Zhang, Y. (2013).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3