Radiation Induced Grafting of Acrylic Acid on to Polyaniline Nanofiber

Author:

Kamarudin S.1,Mohammad M.1,Mohammed N.2

Affiliation:

1. Universiti Kebangsaan Malaysia

2. Malaysia Nuclear Agency

Abstract

This study aims to explore modification of polyaniline nanofiber through grafting polymerization to increase its solubility and processability for application in aqueous environment. Grafting via electron beam radiation procedure is extremely productive in terms of time consumption and environmental friendliness. In this work, acrylic acid was grafted on to polyaniline nanofiber using electron beam irradiation. The influence of altering the electron beam power from 2-3 MeV, radiation dosage from 5-25 kGy, acrylic acid concentration from 10-100% and soaking time from 2-24 hours during graft polymerization were studied over the grafting percentage (%G). Grafting parameter was determined by weight changes before and after grafting procedure. Grafted polyaniline is characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA). Formation of new peak at 1700 cm-1 for FTIR spectroscopy analysis of grafted polyaniline confirmed grafting has taken place during irradiation.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3