Co-Catalyzed Si3N4/Sialon Nanofibers Reinforced SiC Refractories

Author:

Zhang Meng1,Huang Jun Tong2,Li Xi Bao1,Hu Zhi Hui1,Liu Ming Qiang1,Feng Zhi Jun1

Affiliation:

1. Nanchang University

2. Wuhan University of Science and Technology

Abstract

SiCp matrix refractories reinforced by Si3N4/Sialon nanofibers in-situ catalytic formed were prepared at 1400 °C. The roles of catalyst Co on the structure and properties of as-prepared products were studied. We found that the catalyst Co enhanced the nitridation of Si and/or Al. With the increasing of Co addition (from 0-2.0 wt.%), the apparent porosity of the products decreased first and then increased, while the bending strength and the bulk density were exactly the opposite. The as-prepared Si3N4/Sialon bonded SiC refractories exhibited the highest strength of 61.1 MPa as the Co content was 1.0 wt.%. The addition of Co was beneficial to the formation of Si3N4/Sialon nanofibers and the sintering of Si3N4/Sialon bonded SiC matrix refractories, which effectively improved the strength of the samples.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3