Coercivity Enhancement of Hexagonal Ferrites

Author:

Jacobo Silvia E.1,Bercoff P.G.2

Affiliation:

1. Universidad de Buenos Aires

2. Universidad Nacional de Córdoba

Abstract

Hexagonal ferrites have been widely used as permanent magnets since their discovery in the 1950s. In spite of their relatively modest magnetic properties, ferrite magnets still show the best performance-to-cost ratio and different investigators are trying to improve their magnetic capabilities by using different synthesis methods and compositions. Different scientific investigations and techniques (Mössbauer spectrometry, X-ray diffraction, and magnetic measurements) have allowed to optimize the permanent magnet properties of rare earth substituted hexagonal ferrite magnets such as La-Co and Nd-Co Sr and Ba ferrites. However, the solubility of rare earth ions in M-type hexaferrite is very low and their introduction leads to the formation of secondary phases, which must be avoided in order to obtain permanent magnets with optimal properties. We report results on enhanced coercivity of hexagonal Sr ferrites with Nd-Co substitution synthesized by the self-combustion method and calcination at 1100°C for two hours. The synthesis of this kind of ferrite is performed with a deficient, non-stoichiometric iron content (ratio Fe/ Sr1xRxof 10 and 11 instead of 12) in order to explore the presence of secondary phases. Comparison with samples of the same composition and stoichiometric formulation is made. Samples with lower iron content show the highest saturation magnetization, remanence and/or coercivity, indicating that the best results for applications of this ferrite will be obtained with an iron deficiency in the stoichiometric formulation. Nd substitution enhances the ferrite anisotropy and coercivity with respect to the unsubstituted sample.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3