Affiliation:
1. Czech University of Life Sciences Prague
Abstract
In the field of composite materials, in some areas, the current trend is the substitution of synthetic reinforcement by natural material. Biological reinforcements thus optimize the resulting mechanical characteristics in a number of cases, where the resulting material can be labeled as environmentally sensitive. The problem of biological materials can be their aging. For the specification of application areas of composite materials with biological reinforcement, it is necessary to know the stability of these materials over time. The paper describes the composite material with epoxy matrix and filler in the form of microparticles (100-200 μm) prepared from coconut shells (CSP/epoxy). Epoxy resin for joining materials in engineering was filled with 2.5, 5.0 and 10.0 wt.% of CSP, and resin used for vacuum infusion was filled with 30 wt.% of CSP (different kind of preparation of composite systems) . For an experimental description of aging was used degradation chamber, where both, the humidity and temperatures in each cycle were changed + 70 °C/-40 °C. An important indication of mechanical aging was used to describe aging, namely shear strength and tensile strength. The degradation period was 5 weeks, corresponding to 35 cycles, i.e. 840 hours of degradation. During the degradation time, the shear strength of the CSP composite dropped to 42.2%, the tensile strength of the prepared infusion system dropped by 49.6%.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics