Synthesis and Characterization of Multi-Angular Branched ZnO Microstructures and Peculiar Nanopushpins Obtained by Thermal Treatment from Compacted ZnS Powder

Author:

Mora J.R.1,Flores-Carrasco Gregorio1,Pacio Mauricio1,Díaz-Rodríguez T.G.1,Juárez Hector1

Affiliation:

1. Benemérita Universidad Autónoma de Puebla

Abstract

Multi-angular branched ZnO microstructures with rods-shaped tips and nanopushpins with hexagonal cap on top have been synthesized by a simple thermal treatment process of compacted ZnS powder used as starting material and substrate. The structures have been grown at different temperatures (800, 900 and 1000 °C) for 60 min, in a constant nitrogen environment at atmospheric pressure via a catalyst-free process. XRD results of the as-grown products from ZnS powder show a significant reduction in the cubic zincblende phase to the hexagonal wurtzite phase with the increase of treatment temperature, as compared to the bulk value. Post-anneal analyses indicated that the transformation of morphologies of the as-grown structures also depends strongly on the treatment temperature. The proposed method represents an easy and economical way to grow complex structures of ZnO, with a relatively short time, furthermore, without the neediness of use an external substrate to grow. These new and interesting nanostructures have potential in applications such as optoelectronics.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3