Using Iterative Discrete Wavelet Transform to Improve Trace Element Analysis by XRF Spectrometer

Author:

Ma Qian1,Liu Lian1,Li Fu Sheng1,Zhao Yan Chun1

Affiliation:

1. University of Electronic Science and Technology of China

Abstract

X-ray fluorescence (XRF) spectrometry has certain difficulties of detecting trace amount material components accurately when measuring material samples composed of variable elements, mainly due to low Signal to Noise Ratio (SNR) issues of the characteristic spectroscopic peaks from the measurement. In this paper, a novel method called background noise reduction using Iterative Discrete Wavelet Transform (IDWT) methodology for trace element material analysis by advanced X-ray fluorescence spectrometer is proposed to improve SNR, thereby decreasing the Limit of Detection (LOD) for elemental qualitative analysis, and then achieve a more accurate quantitative analysis of trace elemental concentration. This paper utilized handheld X-ray fluorescence spectrometer to obtain the content of Sulphur in petroleum and 4 major pollution elements in soil. A total of 81 standard samples were collected and measured. The hardware parameters of the instrument were adjusted to optimize the SNR before background noise reduction. Experimental results illustrate that X-ray tube parameters have great influences on the calibration regression. Different X-ray tube voltages were tested and the optimal results were achieved at 5kV. Furthermore, IDWT algorithm was implemented and the optimal results were achieved by wavelet base “db5” and “sym4” with 7 level decomposition. The calibration regression curves were established for the Sulphur in petroleum. The regression R2 values after IDWT were increased effectively when compared with original data without IDWT. Finally, the experimental results demonstrate a very good linearity between the weight contents of the target material and the XRF spectral characteristic peak intensity, and also it is found the LOD for Sulphur in petroleum can be reduced when combing with the IDWT.

Publisher

Trans Tech Publications Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3