Abstract
This article provides a brief introduction to micromechanics using linear elastic materials as an example. The fundamental micromechanics concepts including homogenization and dehomogenization, representative volume element (RVE), unit cell, average stress and strain theories, effective stiffness and compliance, Hill-Mandel macrohomogeneity condition. This chapter also describes the detailed derivations of the rules of mixtures, and three full field micromechanics theories including finite element analysis of a representative volume element (RVE analysis), mathematical homogenization theory (MHT), and mechanics of structure genome (MSG). Theoretical connections among the three full field micromechanics theories are clearly shown. Particularly, it is shown that RVE analysis, MHT and MSG are governed by the same set of equations for 3D RVEs with periodic boundary conditions. RVE analysis and MSG can also handle aperiodic or partially periodic materials for which MHT is not applicable. MSG has the unique capability to obtain the complete set of 3D properties and local fields for heterogeneous materials featuring 1D or 2D heterogeneities.
Publisher
Trans Tech Publications, Ltd.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献